Quantifying pollution mixing across low velocity real emergent vegetation patches and borders

Patrick West
06/07/16

Introduction - What is the problem?

Natural system Physically modelled

How does the mixing across patches and borders affect the total pond residence time?

Introduction – what is lacking?

Current models treat system as three mixing zones:
- Vegetated
- Open channel
- Mixing layer

Extensively investigated for idealised homogeneous and artificial vegetation.

Paucity of research employing naturally cultivated real vegetation in the control of a laboratory.

Motivation was to aid the development of a practically useful 2D application to predict pond residence times.

How does the theory developed in these conditions apply to random real vegetation borders?
Quantifying pollution mixing across low-velocity real emergent vegetation patches and borders

Methodology

- Naturally cultivated winter and summer *Typha* vegetation imported into the laboratory
- Compare to high and low density artificial vegetation
- Continuous tracer release – steady-state simulation
- Laser Induced Fluorometry (LIF)
- Acoustic Doppler-shift Velocimetry (ADV)
- Black-out conditions and detailed calibration – precise measurement system
- Quantify vegetation characteristic – stem counting, diameter measurements, image processing.

Results - Velocity

- Velocity profiles in artificial vegetation agree with classical shear-layer forms
- Velocity in real vegetation is non-classical - multiple inflection points
- Vortex penetration poorly defined;
- Heterogeneous distribution causes deviation from classical description making characterisation difficult.

Result - Tracing

Continuous injection 2D distributions (5.25 l/s example).
< 1% of maximum converted to white for visual purposes.

Temporal average between > 20% of maximum concentration to give steady-state profiles.

Quantifying pollution mixing across low-velocity real emergent vegetation patches and borders
Optimised Finite Difference Model (OFDM) Analysis

Proposed functionality for transverse mixing coefficient, \(D_y(y) \)

\[D_y = k_1 U_1 \]

\[D_y = k_2 U_2 \]

Quantifying pollution mixing across low velocity real emergent vegetation patches and borders

Model analysis Results

Steady-state concentration

<table>
<thead>
<tr>
<th>Vegetation Type</th>
<th>Finite Difference Model</th>
<th>OFDM Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular</td>
<td>0.9349</td>
<td>0.9118</td>
</tr>
<tr>
<td>Artificial</td>
<td>0.9378</td>
<td>0.9702</td>
</tr>
<tr>
<td>Winter Typha</td>
<td>0.9305</td>
<td>0.9603</td>
</tr>
<tr>
<td>Summer Typha</td>
<td>0.9305</td>
<td>0.9603</td>
</tr>
</tbody>
</table>

The model was then evaluated for various characteristic mixing profiles.

OFDM Results

Triangular

High density artificial

Low density artificial

Winter typha

Summer typha

Quantifying pollution mixing across low velocity real emergent vegetation patches and borders

OFDM Limitations

- Defining the regions of steady-state concentration difficult given the temporal variability in the record.
- Profiles \(U(y) \) assume an average velocity field between upstream and downstream.
- Non-classical nature of \(U(y) \) limits definition of vortex penetration lengths.
- Definition of the regions of constant mixing (e.g. wake and open channel zones) reliant on vortex and mean velocity estimations.
- Models were sensitive to the magnitude of peak mixing more than the location.

Quantifying pollution mixing across low velocity real emergent vegetation patches and borders
1. Quantification of mixing across shear layer; real emergent vegetation;
2. Precise measurement of velocity fields in controlled real vegetation;
3. Application of theory developed in homogeneous, artificial conditions to real vegetation;
4. Application of Finite Difference Model to optimize different functional forms of transverse mixing coefficient to both artificial and real shear layers.

- Heterogeneous vegetation limits application of theory developed in homogeneous conditions.
- Velocity profiles are rough averages and the quantification of the vegetation has large error.
- OFDM useful tool for quantifying mixing field although there is potential to find non-physical solutions; therefore further constraints may be needed for real vegetation.
- Various functionalities for \(D(y) \) yield acceptable fits, where the unconstrained functions give good predictions.
- However, a simple step model is acceptable for the real vegetation.

Quantifying pollution mixing across low velocity real emergent vegetation patches and borders.