Development of a laboratory system and 2D routing analysis to determine solute mixing within aquatic vegetation
Patrick West*, James Hart*, Ian Guymer*, Virginia Stovin*
*University of Warwick, UK
• University of Sheffield, UK

Determining solute mixing in aquatic vegetation

Background
• Diffuse pollution major problem
• Intensive use of pesticides, fertilizers from agriculture & heavy-metals motorways
• Interception of wastewater using ponds and wetlands (SuDS)
• Retention time influences treatment

Research Aims
• Quantify mass transport in vegetated shear layers/interfaces
• Develop precise tracer detection system
• Investigate for a range of variables (e.g. flow rate, plant age, plant density)
Methodology
Two tracer detection methods compared.
1. Point probe fluorometry
2. Laser Induced Fluorometry (LIF)
Emergent artificial vegetation is used as a test case. Temporal and spatial observations of tracer elucidate mixing characteristics.
Quantify **Transverse** and **longitudinal dispersion** coefficients.

1. Point Probe Fluorometry
   - Dye injected continuously
   - Temporal concentration recorded

Point Probe Fluorometry - issues
- Large spread in data
- Low mixing causes observation difficulties
- Intrusive and disruptive
- Spatially variable mixing properties cannot be extensively recorded e.g. poor spatial resolution.

2. Laser Induced Fluorometry (LIF)
   - Laser directed through flow
   - Camera images from below – “black-out” conditions
   - Fluorescence proportional to Rhodamine 6G concentration
   - Laser/camera system calibrated with known concentrations
LIF Results
- Centreline injection, mid-depth
- 5 s pulse injections, 10 x repeats + 10 min constant injection
- 5Hz imaging at $x = 1$ m & $x = 2$ m downstream

LIF Results – 2D Routing
- Upstream 2-dimensional concentration distribution fitted to downstream distribution using Gaussian transfer function.
- Process repeated to maximise fit using optimisation.
- Four parameters optimised: Longitudinal dispersion coefficient, transverse mixing coefficient, and depth-mean stream-wise and transverse velocities.

LIF Results – 2D Routing
Single 5s pulse (1.8 l/s), white lines = routed distribution

LIF benefits over Point Probe
- Spatially extensive
- Non-intrusive
- Greater resolution
- Reasonable error for all 10x repeats
- More reliable

<table>
<thead>
<tr>
<th>$Q$ (l/s)</th>
<th>$u$ measured (m/s)</th>
<th>$D_x \times 10^5$ (m²/s)</th>
<th>$D_y \times 10^5$ (m²/s)</th>
<th>$R^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>0.010</td>
<td>8.66±16.7%</td>
<td>2.42±7.4%</td>
<td>0.90±0.01</td>
</tr>
<tr>
<td>2.4</td>
<td>0.013</td>
<td>2.97±18.7%</td>
<td>0.84±0.02</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>0.020</td>
<td>4.22±2.5%</td>
<td>0.91±0.02</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- Preliminary tracer tests conducted in full vegetated, artificial, emergent vegetation.
- LIF more suitable than point probe fluorometry for observing mixing.
- LIF is Non-intrusive & spatially extensive.
- 2D routing useful technique.
- Heterogeneous flow fields demand alternative analysis.

Current Work...

- Application of technique to shear vegetation and different vegetation densities – interface interactions
- Live vegetation – seasonal effects
- Comparison between real and artificial

Thank you for listening!

Any questions?
Determining solute mixing in aquatic vegetation